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Abstract

The received wisdom about inference problems for inequality measures is that these are
caused by the presence of extremes in samples drawn from heavy-tailed distributions. We show
that this is incorrect since the density of the studentised inequality measure is heavily skewed to
the left, and the excessive coverage failures of the usual confidence intervals are associated with
low estimates of both the point measure and the variance. For further diagnostics the coefficients
of bias, skewness and kurtosis are derived for both studentised and standardised inequality
measures, and the explicit cumulant expansions make also available Edgeworth expansions and
saddlepoint approximations. In view of the key role played by the estimated variance of the
measure, variance stabilising transforms are considered and shown to improve inference.
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1 Introduction
While first order asymptotics for estimators of measures of inequality, such as Generalized Entropy
indices, are well known, it is now also well known that this theory is a poor guide to actual behaviour
in samples of even moderate size when the population (income) distribution exhibits a right tail which
decays sufficiently slowly. Such distributions not only include the class of heavy-tailed distributions,
whose tail decays like a power function, but also, for instance, the lognormal distribution, whose tail
decays exponentially fast, provided the shape parameter is sufficiently large. For instance, Schluter
and van Garderen (2009) have shown that the actual (finite sample) densities of the estimators are
substantially skewed and far from normal. Standard one-sided and equi-tailed two-sided confidence
intervals are too short, exhibiting coverage error errors significantly larger than their nominal rates
thus rendering inference unreliable. Davidson and Flachaire (2007) have shown that this problems
persist for standard bootstrap inference.
Following the contributions of Schluter and Trede (2002), several authors have focused on the

tail behaviour of the population income distribution. In particular, if the distribution is heavy-
tailed, samples are likely to contain “extremes” or “outliers”, i.e. income realisations from the tail
of the distribution which are substantially larger than income realisations associated with the main
body of the distribution. The natural intuition, pursued in Cowell and Flachaire (2007), Davidson
and Flachaire (2007) and Davidson (2010) is to surmise that these extremes are the root cause
of the inference problem since most inequality measures are not robust to such extremes (Cowell
and Victoria-Feser, 1997). We show in this paper that this intuition is incorrect since the coverage
failures of standard confidence intervals are associated with estimates of the inequality measure and
estimates of its variance which are both too low compared to their population values. We also show
that this holds for income distributions whose right tail decays faster than a power function, such
as the lognormal provided its shape parameter is sufficiently large.
The principal contribution of the paper is the diagnosis of the underlying problem for inference.

Denoting bI and dvar(bI) the standard estimators of the inequality measure and its variance, the
problem is made visible via simulations in plots of realisations of dvar(bI) against bI and identifying
those (bI,dvar(bI)) pairs which are associated with a coverage failure of standard two-sided confidence
intervals. Since the actual density of the studentised measure is shown to have a substantial left
tail, this implies that the usual right confident limit is too often too small. Almost all coverage
failures are on this side (despite the fact that the standard confidence intervals are two-sided and
symmetric), and these wrong confidence limits, it turns out, are associated with particularly low
realisations of both bI anddvar(bI).
In order to understand better the separate and joint contributions of bI anddvar(bI) to the inference

problem we develop asymptotic expansions for both studentised and standardised (by the theoretical
variance) inequality measures. Building on the second-order expansions of Schluter and van Garderen
(2009), we now consider third-order expansions. In particular, we derive the bias, skewness and
kurtosis coefficients. The principal usefulness of these coefficients is as diagnostic tools. These enable
us to quantify the departure from normality of the finite sample distributions, and to highlight the
role of the variance estimatedvar(bI) in the comparison between the studentised and the standardised
inequality measures. While the density of the standardised inequality measure is close to normal
and skewness is only modest, the studentised density exhibits significant skewness. This good
performance of the standardised inequality measure contrasts starkly with the poor performance
of the studentised measure, and also shows that it is not the non-linearity of the inequality index per
se, as suggested in Davidson and Flachaire (2007), which contributes to the poor performance but
it arises from the need to estimate the variance of the inequality measure, and it is the correlation
of this variance estimator with the inequality estimator that plays an important role. Given the
prominent role of the estimated variance dvar(bI) in the inference problem, we consider the merit of
using variance stabilising transforms, and show that, in conjunction with the studentised bootstrap,
inference does improve.
The plan of paper is as follows. The class of inequality measures considered in this paper is

defined in Section 2. Section 3 presents the simulation evidence which shows that the received
wisdom about the role of extremes is incorrect. In particular, we show that it is particularly low
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realisations of both bI anddvar(bI) which are associated with excessive coverage errors of the usual two-
sided confidence intervals. We propose asymptotic expansions for the cumulants of both standardised
and studentised inequality measures as diagnostic tools to better understand the inference problem.
These are considered abstractly and numerically in Section 4. In order to maintain readability, the
precise statements of the cumulant coefficients are collected in Appendix A. Given the availability of
the cumulant coefficients, it is of interest to investigate the extent to which Edgeworth expansions
and saddlepoint approximations yield distributional improvements. This is done in the digression of
Section 4.1. Improvements are shown to be available for income distributions with sufficiently fast
decaying tails, but in line with established results in the statistics literature in different settings,
performance worsens as the magnitude of the moments increase sufficiently. The specific behaviour
of the estimated variance dvar(bI) suggests the application of variance stabilising transforms. This
is done in Section 4.2, which also quantifies the resulting inferential improvements. All proofs are
collected in the appendix.

2 Generalized Entropy Indices of Inequality
We consider the popular and leading class of inequality indices, the Generalized Entropy (GE)
indices. These are of particular interest because it is the only class of inequality measures that
simultaneously satisfies the key properties of anonymity and scale independence, the principles of
transfer and decomposability, and the population principle. For an extensive discussion of the
properties of the GE index see Cowell (2000). The class of indices is defined for any real α by

I(α;F )
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
α2−α

h
μα(F )
μ1(F )

α − 1
i

for α 6= {0, 1}

−
R
log( x

μ1(F )
) dF (x) for α = 0R

x
μ1(F )

log( x
μ1(F )

) dF (x) for α = 1

(1)

where α is a sensitivity parameter, F is the income distribution, and μα(F ) =
R
xαdF (x) is the

moment functional, and we will assume incomes to be positive. The index is continuous in α. The
larger the parameter α, the larger is the sensitivity of the inequality index to the upper tail of the
income distribution. It is not monotonic in α, however. Although the index is defined for any real
value of α, in practice only values between 0 and 2 are used and we confine our examination to this
range. The limiting cases 0 and 1 are treated implicitly below since all key quantities are continuous
in α.
GE indices constitute a large class which nests some popular inequality measures as special cases.

If α = 2 the index is also known as the (Hirschman-)Herfindahl index and equals half the coefficient
of variation squared. Herfindahl’s index plays an important role as measure of concentration in
industrial organization and merger decisions. In empirical work on income distributions this value
of α is considered large. Two other popular inequality measures are the so-called Theil indices,
which are the limiting cases α = 0 and α = 1. Finally, the Atkinson index is ordinally equivalent to
the GE index.
We follow the literature cited above and assume that incomes X are independent and identically

distributed according to income distribution F , and that we have samples of size n at our disposal. I
is usually estimated by bI = I( bF ) where bF is the empirical distribution function, hence the estimator
replaces the population moments in (1) by the sample moments. We denote the sample analogue of
μα(F ) by mα = μα( bF ). For a sample of size n define the studentised index

Sn =
√
n

Ã bI − Ibσ
!
, (2)

where bσ is an estimate of the asymptotic standard deviation of √n(bI − I), derived by the delta
method and given by σ =

£¡
α2 − α

¢
μα+11

¤−1
B
1/2
0 with B0 = α2μ2αμ2 − 2αμ1μαμα+1 + μ21μ2α −
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(1− α)
2
μ21μ

2
α. bB0 and thus bσ is obtained by replacing population moments with sample moments.

In order to examine the role played by the estimated variance bσ2 we also consider the standardised
inequality measure eSn = √nÃ bI − I

σ

!
. (3)

We will distinguish standardised quantities from their studentised counterparts throughout by tildes.
Simplifying a little we have thus Sn =

√
n bB−1/20

£
mαm1 − μ−α1 μαm

α+1
1

¤
and eSn = √nB−1/20 [μα+11 mαm

−α
1

− μ1μα].
By standard central limit arguments, Sn has a distribution that converges asymptotically to the

Gaussian distribution (see e.g. Cowell, 1989), thus Pr (Sn ≤ x) = Φ (x)+O
¡
n−1/2

¢
where Φ denotes

the Gaussian distribution.

3 Simulation Evidence: the Role of bI, dvar(bI), and the Tail
Behaviour of F

We follow the previous literature cited above and consider the two leading parametric income distri-
butions which are regularly used to fit real real-world income data, namely the lognormal LN(m, sd)

and the Singh-Maddala distribution SM (a, b, c)whose density is f (x; a, b, c) = abcxb−1/
¡
1 + axb

¢c+1
.

These distributions are skewed to the right, but differ in other ways, such as their right tail behav-
iour. In particular, the tail of LN decays exponentially fast, whereas Schluter and Trede (2002)
have shown that the tail of SM decays like a power function (with right tail index equal to bc).
Generalized Entropy indices are scale invariant, and thus independent of the parameters m

and a for the LN and SM distributions respectively. For notational convenience, we suppress
these irrelevant parameters below. Since I is scale invariant, so is σ and thus Sn. The population
values are in the lognormal case I (α; sd) =

¡
α2 − α

¢−1 × [exp(0.5 ¡α2 − α
¢
(sd)2) − 1], and in the

Singh-Maddala case, defined only for bc > α, I(α; b, c) =
¡
α2 − α

¢−1
c−(α−1)B (1 + α/b, c− α/b)

/ [B (1 + 1/b, c− 1/b)α − 1] where B (·, ·) denotes the Beta function. The asymptotic variance σ2
of the inequality measure is always finite in the LN case, but in the SM case we require that
bc > max {2, 1 + α, 2α}.
For the sake of brevity, we illustrate the main insights for two lognormal cases with sd ∈ {.3, .7}

and the SM case with b = 2.8 and c = 1.7,1 while letting the sensitivity parameter α of the inequality
index take on values in {.05, 1.05, 2}, so we focus essentially on the Theil indices and I (2). We
consider samples of size n = 500, and repeat the experiments 10,000 times. The simulation exercises
are illustrative, and not exhaustive. Complementary simulation evidence is provided in Davidson
and Flachaire (2007) and Schluter and van Garderen (2009). Our qualitative conclusions also hold
for these other settings.
The first set of experiments simply consists in estimating, using standard kernel density esti-

mators, the actual densities of the studentised inequality measure S500 and of the standardised
inequality measure eS500, focusing on the skewness of the densities. The juxtaposition of S500 andeS500 is a first illustration of the distributional impact of having to estimate σ2. Figure 1 depicts the
results. The kernel density estimates for S500 in the SM clearly reveal the substantial skewness the
density of the studentised measure suffers when incomes are generated by a heavy-tailed distribu-
tion. The problem increases as the sensitivity parameter α of the inequality measure increases. The
problem is not, however, exclusively associated with tails which decay like power function. While
the density estimates for S500 in the lognormal case look fairly Gaussian when the shape parameter
is 0.3, increasing the shape parameter to 0.7 induces again substantial skewness. As a shorthand,
we will refer to these two cases as income distributions which exhibit “sufficiently slow tail decay.”
By contrast, the density estimates for the standardised inequality measure eS500 do appear very

symmetric. However, the densities also exhibit a greater concentration around 0 than the Gaussian

1SM (., 2.8, 1.7) and LN (., .3) are good fitting parametrisations of the income distribution in Germany.
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density when the tails of the income distribution decay sufficiently slowly and the sensitivity para-
meter α equals 2. For the lower values of α the densities appear close to Gaussian.
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Figure 1: Density estimates for S500 and eS500. Notes: α = 2 (solid line), α = 1.05 (broken line),
α = 0.05 (dotted line).

These estimated densities have several important implications for inference when incomes are
drawn from distributions with sufficiently slow tail decay. The non-Gaussian shape of the density
of S500 suggests that standard inference is likely to be unreliable. The substantial left tail of the
densities indicates that there are too many realisations bI which are too small (contrary to the natural
intuition). In conjunction with the steep increase of the densities at the depicted right tail, coverage
errors of standard symmetric two-sided confidence intervals are likely to be one-sided. A comparison
of the densities of S500 and eS500 suggests that the distributional problem arises from the need to
estimate σ2. It is not the non-linearity of the inequality measure I which induces the non-Gaussian
shape of the density of S500, but the systematic relation between bI and dvar(bI) on which we focus
on next.
We turn to the induced inferential problems by considering the actual coverage errors of standard

95% two-sided symmetric confidence intervals. The interplay between bI, dvar(bI), and the coverage
errors is examined by simply plotting the (bI,dvar(bI)) pairs, and by identifying those pairs which
are associated with a coverage error. It turns out that both the LN (., 0.7) and the SM cases yield
qualitatively similar results. In particular, compared to nominal coverage error rate of 5%, the actual
total coverage error rate in the lognormal case is 14.3%, but almost all rejections (13.8 percentage
points) are rejections on the right (i.e. the population value I exceeds the right confidence limit). In
the SM case the total rate is 15.5%, and 15.2 percentage points are rejections on the right. This is
the flip-side of the substantial left tail and the heavy skewness of the density of S500. These wrong
confidence limits are associated with particularly low realisations of both bI and dvar(bI), which is
depicted in the bI vs. n ×dvar(bI) plot of Figure 2. Given that almost all coverage errors are right
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rejections, we restrict the depicted range of bI, and re-label those (bI, n ×dvar(bI)) pairs associated
with such a coverage error to the right by R. The population value of I is indicated by the vertical
line, the population value of n× var(bI) exceeds the depicted range.2
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Figure 2: Coverage errors in bI vs. n ×dvar(bI) plots. Notes: the vertical line corresponds to the
population value of I, pairs labelled R correspond to coverage errors on the right of standard 95%
two-sided symmetric confidence intervals.

These results are at odds with observations made in the literature and thus constitute an im-
portant contribution. In particular, Cowell and Flachaire (2007), Davidson and Flachaire (2007)
and Davidson (2010) follow the natural intuition for heavy-tailed income distributions: samples
drawn from heavy-tailed income distributions are likely to contain “extremes” or “outliers”, and
these extremes are conjectured to be the root cause of the inference problem since most inequality
measures are not robust to such extremes. This intuition is incorrect since the coverage failures of
standard confidence intervals are associated with estimates of the inequality measure and estimates
of its variance which are both too low compared to their population values. Moreover, this also
holds for income distributions whose right tail decays faster than a power function, such as the
lognormal provided its shape parameter is sufficiently large. Finally, Davidson and Flachaire (2007)
attribute some inferential problems to the non-linearity of the inequality measure. The juxtaposition
of the densities of studentised and standardised inequality measure suggests that the problem is the
non-linearity of Sn, and in particular the systematic relationship between bI anddvar(bI).
We proceed to examine the issues of skewness and kurtosis formally using asymptotic expansions.

4 Asymptotic Expansions
Asymptotic expansions of the cumulants of Sn provide measures for the departures of the distribution
of Sn from the Gaussian limit. These will used below as diagnostic tools for the anatomy of the
above inference problems.

2The population values (I, 500×var(I)) are (0.316, 1.313) in the lognormal case and (0.162, 0.65) in the SM case.
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Expanding the first four cumulants of Sn in powers of n−1/2 yields

K1 = n−1/2k1,2 +O
³
n−3/2

´
(4)

K2 = 1 + n−1k2,2 +O
¡
n−2

¢
K3 = n−1/2k3,1 +O

³
n−3/2

´
K4 = n−1k4,1 +O

¡
n−2

¢
.

Since Sn studentised, the coefficient k1,2 is the bias coefficient, k3,1 is the coefficient of skewness,
and k4,1 is the kurtosis coefficient.3 In terms of the cumulant generating function of Sn, given by
exp (KSn (s)) = E {exp (sSn)}), the cumulant coefficients define the second and third order term in
the approximation to KSn , i.e. we have

KSn (s) =
1

2
s2 + n−1/2

µ
sk1,2 +

1

6
s3k3,1

¶
+ n−1

µ
1

2
s2k2,2 +

1

24
s4k4,1

¶
+O

³
n−3/2

´
. (5)

In the exact Gaussian case, all these coefficients are zero.
It is an important contribution of this paper to derive explicitly these cumulant coefficients for

both studentised and standardised inequality measures. In order to maintain readability of the
exposition, these cumulant coefficients are stated explicitly in Appendix A below, since the resulting
expressions are lengthy and involve expectations of products of certain mean-zero random variables.
These coefficients are also the key quantities in the Edgeworth expansion of the CDF of Sn given

by

Pr {Sn ≤ x} = Φ (x) + n−1/2p1 (x)φ (x) + n−1p2 (x)φ (x) +O
³
n−3/2

´
(6)

with

p1 (x) = −
µ
k1,2 +

1

6
k3,1

¡
x2 − 1

¢¶
p2 (x) = −x

µ
1

2

¡
k2,2 + k21,2

¢
+
1

24
(k4,1 + 4k1,2k3,1)

¡
x2 − 3

¢
+
1

72
k23,1

¡
x4 − 10x2 + 15

¢¶
.

The right hand side of equation (6) is to be interpreted as an asymptotic expansion since it does
not necessarily converge as an infinite series. See e.g. Hall (1992) for an extensive discussion of
Edgeworth expansions, its relation to the bootstrap, and in his Section 2.4 a statement of the
regularity conditions for the validity of the expansion. The GE index is a smooth function of the
moments with continuous third derivatives and μ1 > 0 since we assume incomes be positive. This
implies that Hall’s Theorem 2.2 applies and we require that (i) X has a proper density function
(implying that Cramér’s condition is satisfied), and with α∗ = max {2, α+ 1, 2α} that (ii) μ3α∗ <∞
for the first order expansion which includes the O

¡
n−1/2

¢
term and μ4α∗ <∞ for the second order

expansion which includes the O
¡
n−1

¢
term. If μ4α∗ < ∞ then the regularity condition of footnote

3 with r = 4 is satisfied. These moment conditions are satisfied in the lognormal distribution, in
case of the SM the admissible parameters must satisfy bc < (j + 2)α∗ for the Edgeworth expansion
of order j. For the standardised inequality measure eSn, α∗ appearing in the regularity conditions is
replaced by max {1, α}.
In view of the inferential problems it can be advantageous to consider non-linear transformations

of the inequality index. Asymptotic expansions for such transforms follow immediately after con-
sidering the relation between the transform and Sn. Hence the cumulant coefficients can be used
again as diagnostic tools to assess whether the transform has had desirable effects. Alternatively,
the cumulants coefficients for the transform can be used to inspire specific transformations. For
instance, Schluter and van Garderen (2009) consider normalising transformations which seek to an-
nihilate asymptotically the skewness coefficient of the transform. Alternatively, in the light of the
role played by bσ2 we consider the merit of using variance-stabilising transforms below.

3The cumulant of order r exists if the all moments of Sn up to order r exist.
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Denote the studentised transform by

Tn = n1/2
t (I)− t (I0)bσt0 (I) ,

where t0 (I) 6= 0, and denote the cumulant coefficients of Tn by λi,j .

Proposition 1 To Op

¡
n−3/2

¢
we have

Tn = Sn −
1

2
n−1/2bσ t00 (I0)

t0 (I0)
S2n + n−1bσ2 "1

2

t00 (I0)
2

t0 (I0)
2 −

1

3

t000 (I0)

t0 (I0)

#
S3n.

Corollary 2 The cumulant coefficients for Tn are

λ1,2 = k1,2 −
1

2
σ
t00 (I0)

t0 (I0)

λ2,2 = k2,2 − σ (k3,1 + 3k1,2)
t00 (I0)

t0 (I0)
+ σ2

Ã
15

4

∙
t00 (I0)

t0 (I0)

¸2
− 2 t

000 (I0)

t0 (I0)

!
− t00 (I0)

t0 (I0)

3

2
c

λ3,1 = k3,1 − 3σ
t00 (I0)

t0 (I0)

λ4,1 = k4,1 − 2σ
t00 (I0)

t0 (I0)
k5,1 − 12σ

t00 (I0)

t0 (I0)
k3,1 + 24σ

2 t
00 (I0)

2

t0 (I0)
2 − 8σ

2 t
000 (I0)

t0 (I0)
− 21 t

00 (I0)

t0 (I0)
c.

The term c, which depends on α and certain moments but is scale-invariant, is induced by the
estimation error of bσ of order n−1/2, and is defined explicitly in the proof of this corollary.
We proceed to examine quantitatively the cumulant coefficients for the distributions considered

above.

Sn eSn
α sd I σ k1,2 k3,1 k2,2 k4,1 ek1,2 ek3,1 ek2,2 ek4,1
.05 .3 .045 .065 -2.32 -6.44 31.48 97.48 -0.73 3.11 -0.75 16.45
1.05 .3 .045 .068 -2.86 -8.59 53.05 160.13 -0.76 4.01 -1.36 33.59
2 .3 .047 .080 -3.98 -13.14 111.20 331.99 -0.77 6.13 -2.46 95.12
2 .1 .005 .007 -2.30 -6.37 30.37 95.19 -0.71 3.13 -0.67 16.47
2 .2 .020 .031 -2.87 -8.67 52.76 161.41 -0.74 4.13 -1.26 35.50
2 .4 .087 .168 -5.96 -21.08 263.86 743.25 -0.82 9.79 -4.70 290.80
2 .5 .14 .33 -9.51 -35.29 694.11 1666.81 -0.87 16.54 -8.82 1013.09
2 .6 .22 .61 -16.22 -62.09 2053.56 3080.70 -0.94 29.57 -16.51 4174.65

Table 1: Cumulant coefficients when X ∼ LN(., sd).

Table 1 reports the results for the lognormal case as both shape parameter sd of the income
distribution and the sensitivity parameter α of the inequality index vary. These results are consistent
with those reported in Section 3. In particular, for the moderate shape parameter value sd = .3, the
values of the cumulant coefficients for the studentised index Sn are moderate too, leading to only
moderate departures from normality when sample sizes of n = 500 are considered. The coefficients
increase for fixed sd as α increases. As the shape parameter increases and the right tail of the
income distribution decreases more slowly, all cumulant coefficients increase. For instance, for α = 2
and sd = .6 the skewness coefficient is substantial. Note, however, that in this situation σ is
substantially larger than I. It is therefore of interest to relate the cumulant coefficients to the value
I. This is done in Figure 3, which is an alternative presentation of the results of Table 1. Clearly,
all coefficients increase in magnitude as I (equivalently sd) increases, and for given I as α increases.
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Turning to the the cumulant coefficients of the standardised inequality measure eSn, both bias and
skewness coefficients are substantially smaller in magnitude than for Sn. Consistent with Figure 1,
the skewness coefficient ek3,1 has now the opposite sign.
Next, we turn to the SM distribution, for which case the same qualitative conclusions hold.

Recall that the tail index of this heavy-tailed distribution is bc, so the tail decreases more slowly, or
becomes fatter, as bc decreases, and that for the Edgeworth expansion of order j for the distribution
of Snto exist that μ(j+2)α∗ be finite. In particular, we consider SM (., b, 4) for different values
of b and α. Table 2 reports the results. As before, for given b, the cumulant coefficients for Sn
increase in magnitude as α increases, and for given α the coefficients increase in magnitude as the
tail of the income distribution decreases more slowly (equivalently b decreases or I increases). The
coefficients for eSn are again smaller in magnitude compared to those of Sn, and the sign of the
skewness coefficient has changed.

Sn eSn
α b I σ k1,2 k3,1 k2,2 k4,1 ek1,2 ek3,1 ek2,2 ek4,1
2 5 .032 .050 -2.24 -6.53 28.46 91.51 -0.57 3.52 -0.58 23.09
2 4.6 .038 .058 -2.31 -6.73 30.35 93.06 -0.58 3.64 -0.68 26.79
2 4.2 .045 .069 -2.42 -7.14 34.09 97.56 -0.59 3.85 -0.84 33.53
2 4.01 .049 .076 -2.50 -7.45 36.93 101.20 -0.60 4.01 -0.94 38.61
2 3.5 .064 .10 -2.88 -8.85 NA NA -0.62 4.70 -1.37 65.42
2 3.01 .09 .14 -3.64 -11.82 NA NA -0.65 6.13 -2.17 146.39
.05 2 .20 .31 -2.28 -6.64 30.80 101.14 -0.62 3.32 -0.77 18.67
1.05 2 .18 .27 -3.62 -11.50 88.88 141.20 -0.76 5.64 -2.90 132.83

Table 2: Cumulant coefficients when X ∼ SM(., b, 4).
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Figure 3: Cumulant coefficients as functions of I. Notes: The top panel depicts the lognormal case,
the bottom panel to the SM case with c = 4; α = 2 (solid line), α = 1.05 (broken line), and α = .05
(dotted line).

4.1 Digression: The Performance of Edgeworth Expansions and Saddle-
point Approximations

Given the availability of the cumulant coefficients it is of interest to investigate whether the two-
term and three-term Edgeworth expansion provide approximations to the actual distribution of Sn
which improve on the Gaussian first order approximation. However, the general shortcomings of
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the Edgeworth expansion are well known: The density expansion is not guaranteed to be positive,
and oscillations are can sometimes be observed in the tails, an observation which also applies in our
setting for sufficiently heavy tails. The problems in the tails are disturbing for inference, since it
is precisely the tail areas that are typically of interest for inference. By contrast, the expansion is
usually good around the mean, in which case it is easily seen that the accuracy of the pdf expansion
improves to O

¡
n−1

¢
. This suggests to Escher-tilt the Edgeworth expansion of the density, which

leads to the saddlepoint approximation (Daniels, 1954, see e.g. Reid, 1988, for a survey). The
new approximation is guaranteed to be positive and exhibits improved tail behaviour since the
approximation error turns out now to be relative rather than absolute.
Recall the cumulant generating function KS of Sn, let K (t) = nKS

¡
tn−1

¢
, and denote its first

and second derivatives by K0 and K00. The saddlepoint approximation to the density of Sn at x is

g (x) = c (2πK00 (s))
−1/2

exp (K (s)− sx) , (7)

where the saddlepoint s satisfies the saddlepoint equation K0 (s) = x. The saddlepoint approxi-
mation is rescaled to integrate to 1 which determines the constant c. The approximation to the
distribution function of S is

G (x) = Φ

µ
w +

1

w
log
³ v
w

´¶
, (8)

with w = sign (s) [2 (sx−K (s))]1/2 and v = s [K00 (s)]1/2. If we denote the pdf of Sn by pdf , then
pdf (x) /g (x) = 1+O

¡
n−1

¢
, so the approximation error is relative rather than absolute (the case of

Edgeworth expansions).
The cumulant generating function of Sn is not known in practice. We therefore approximate

KS (s), following Easton and Ronchetti (1986), to order n−3/2 by using the approximation (5).
This leads to an approximation to the saddlepoint approximation which is of the same order. The
approximate solution to the saddlepoint equation K0 (s) = x is guaranteed to be unique since the
approximation to K0 is a cubic in s.
Performance evidence for the various approximations in the lognormal case is reported in Table

3, as both the sensitivity parameter α of the inequality index and the shape parameter sd changes.
All approximations are evaluated at the quantiles determined by the “exact” (i.e. simulated) CDF
of S500.
The tail accuracy of the normal approximation is poor, and decreases as α increases for fixed

sd and as sd increases for fixed α. Both Edgeworth expansion and the saddlepoint approximation
do well by contrast when sd is fixed at the moderate value 0.3. For instance, in the case of α = 2
when the exact CDF evaluates to .025, the normal approximation is .0069 while the saddlepoint
approximation is .030, and turning to the 97.5% quantile, the normal approximation evaluates to
.955 while the saddlepoint approximation is .97.
However, the performance of all approximations deteriorates as the tail of the income distribution

becomes heavier, which is not unexpected given the sharp increase in the magnitudes of the moments
and the cumulant coefficients. As sd increases to .4, while the two-term Edgeworth expansion does
remarkably well in the left tail, the Edgeworth density in the extreme right tail does become negative.
The extent of the oscillation in the tail becomes more severe as sd increases further.
Similar qualitative and quantitative conclusions follow for the SM distribution, which is not

surprising given the similarities of the results Tables 1 and 2 for I, σ2, and the associated cumulant
coefficients for the chosen distributional parameters. For instance, the LN (, .3) and the SM (., 4.2, 4)
distributions yield similar values for I and σ2, as well as for bias and skewness coefficients. It is
therefore not surprising that the performance of the Edgeworth and saddlepoint approximations in
these two cases are very similar. Precise details are therefore not reported for the sake of brevity. To
summarise, both Edgeworth and saddlepoint approximations perform well for moderate parameter
values but their performance deteriorates when the speed of tail decay of the income distribution
becomes slower. This suggests that it might be preferable to work with suitably transformed in-
equality measures rather than to seek improved approximations to the actual distribution of the
measure.

10



α = .05, sd = .3 α = 1.05, sd = .3 α = 2, sd = .3
CDF norm EE(2) EE(3) saddle norm EE(2) EE(3) saddle norm EE(2) EE(3) saddle
0.01 0.00 0.02 0.04 0.05 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.04
0.10 0.02 0.06 0.12 0.14 0.00 0.01 0.04 0.07 0.00 0.03 0.10 0.19
1.00 0.38 0.83 1.09 1.09 0.20 0.57 0.89 0.92 0.13 0.55 1.12 1.23
2.50 1.29 2.27 2.65 2.63 0.99 2.08 2.66 2.64 0.69 1.99 3.04 3.03
5.00 3.04 4.59 5.04 5.02 2.81 4.73 5.44 5.40 2.06 4.49 5.86 5.75
10.00 7.71 9.93 10.40 10.40 6.97 9.70 10.47 10.46 5.95 9.72 11.29 11.14
25.00 22.43 24.93 25.30 25.36 21.37 24.41 25.07 25.16 20.41 24.58 26.07 26.15
50.00 47.76 49.99 50.02 50.12 46.75 49.31 49.39 49.59 46.73 49.94 50.15 50.67
75.00 72.70 75.14 74.82 74.95 71.62 74.50 73.96 74.23 71.62 75.41 74.19 74.88
90.00 87.94 90.39 89.94 90.02 87.09 90.16 89.40 89.55 87.05 91.37 89.76 89.88
95.00 93.15 95.29 94.82 94.83 92.50 95.29 94.51 94.49 92.64 96.63 95.04 94.72
97.50 96.16 97.88 97.42 97.39 95.62 97.95 97.19 97.08 95.52 98.94 97.42 96.96
99.00 98.09 99.31 98.90 98.85 97.75 99.47 98.77 98.65 97.78 100.30 98.91 98.56
99.90 99.73 100.09 99.86 99.88 99.56 100.20 99.77 99.78 99.60 100.50 99.63 99.74
99.99 99.96 100.05 99.96 99.98 99.86 100.10 99.88 99.94 99.81 100.40 99.70 99.87

α = 2, sd = .1 α = 2, sd = .2 α = 2, sd = .4
CDF norm EE(2) EE(3) saddle norm EE(2) EE(3) saddle norm EE(2) EE(3) saddle
0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.05
0.10 0.01 0.03 0.07 0.09 0.01 0.03 0.08 0.12 0.00 0.00 0.03 0.22
1.00 0.27 0.61 0.83 0.84 0.31 0.83 1.22 1.24 0.06 0.40 1.27 1.72
2.50 1.33 2.31 2.68 2.67 1.16 2.37 2.97 2.95 0.42 1.91 3.97 4.09
5.00 3.29 4.87 5.31 5.29 2.76 4.67 5.38 5.34 1.47 4.65 7.55 7.29
10.00 8.24 10.48 10.93 10.94 6.70 9.41 10.18 10.16 4.97 10.47 14.03 13.41
25.00 23.12 25.59 25.93 25.99 21.01 24.05 24.72 24.81 19.15 25.39 29.33 28.79
50.00 48.51 50.72 50.74 50.83 46.67 49.22 49.31 49.51 46.34 50.74 51.37 52.61
75.00 72.41 74.82 74.53 74.65 72.12 75.00 74.46 74.73 71.48 76.92 73.68 75.21
90.00 87.93 90.35 89.92 90.00 86.96 90.05 89.30 89.45 86.32 92.84 88.83 88.55
95.00 93.23 95.34 94.89 94.90 92.91 95.66 94.89 94.87 91.76 98.03 94.20 93.09
97.50 95.99 97.72 97.28 97.25 95.59 97.94 97.19 97.08 94.80 100.40 96.80 95.53
99.00 98.20 99.37 98.98 98.93 97.70 99.45 98.76 98.63 97.01 101.50 98.23 97.28
99.90 99.62 100.10 99.81 99.82 99.45 100.20 99.73 99.73 99.38 101.30 98.96 99.25
99.99 99.91 100.10 99.94 99.97 99.83 100.20 99.87 99.92 99.76 100.80 99.10 99.63

Table 3: Performance evidence for normal Edgeworth and saddlepoint approximations. Notes:
Income are generated by LN (., sd), and all CDFs*100. CDF is the “exact” CDF based on 10,000
replications of S500, all approximations are evaluated at the quantiles determined by the exact CDF,
normal is the normal CDF, “EE” refers to the two and three-term Edgeworth expansions given by
(6), “saddle” is the approximation to the saddlepoint approximation given by (8).

4.2 Variance Stabilising Transforms

Our results have suggested that an important role for the inference problems is played by the es-
timated variance of the inequality measure and the systematic relation between bI and dvar(bI). We
proceed to examine this relation further. Figure 2 suggests that for the considered income distri-
butions, the relation could be approximately exponential. This is confirmed in Figure 4 Column
1, which plots log(dvar(bI)) vs. bI, and further depicts a non-parametric estimate based on smooth
splines, which is approximately linear. This suggests the application of a variance stabilising trans-
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form. Consider

h
³bI´ = Z t dbIh

var
³bI´i1/2 . (9)

Then h is such that, by the delta method, var(h(bI)) = 1 asymptotically. If log(dvar(bI)) = γ1+γ2bI+
error, this suggests the transform

t (I) = −
µ
2

γ2
e−γ1/2

¶
exp

³
−γ2
2
I
´
. (10)

The cumulant coefficients for this transform follow immediately from Corollary 2 with t00 (I) /t0 (I) =
−γ2/2 and t000 (I) /t0 (I) = (γ2/2)

2.

Lemma 3 If the coefficients of the odd cumulants of Sn are negative, the even ones are positive and
γ2 > 0, then the transform (10) reduces both bias, skewness and kurtosis for sufficiently small γ2.

4

0.20 0.25 0.30 0.35

-8
.5

-8
.0

-7
.5

-7
.0

-6
.5

-6
.0

-5
.5

LN(.,0.7)

Î
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Figure 4: Aspects of variance stabilisation.

Figure 4 depicts the results of applying transform (10), in which the coefficients (γ1, γ2) were
estimated by a simple regression of log(dvar(bI)) on bI using the simulated data.5 In practice, the
estimates can be obtained by a preliminary bootstrap. Column 2 of the Figure plots dvar(t(bI))

4For instance, for the lognormal case LN (., .6) and α = 2 reported in the last row of Table 1, we have with
γ2 =22.2 obtained from regressing log(var(I)) on I : λ1,2 =-12.7, λ3,1 =-41.2, and λ2,2 =1536.17. Note that λ2,2
is not expected to be zero, since neither var(I) is known exactly, nor is (10) the exact variance stabilising transform
(9). λ4,1 is not available since k5,1 is not available. Hence these cumulant coefficients for Tn are smaller in magnitude
than the corresponding coefficients for Sn.

5The estimates of (γ1, γ2) in the LN (., .7) case are (−11.7, 15.9) and in the SM (., 2.8, 1.7) case (−13.6, 34.1).
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on t(bI), and also plots a non-parametric estimate based on smooth splines. It is evident that the
transform does indeed stabilise the variance since the estimated curve is approximately equal to
1 except for a small number of observations in the sparse right tail.6 Column 3 of the Figure
shows simple kernel density estimates of the densities of the studentised S500 (solid line) and T500
(dashed line). The density of the transform is more symmetric and the skewness problem has been
much reduced. Qualitatively similar pictures obtain for different values of α and different income
distribution parameters.

LN (., .7) SM (., 2.8, 1.7)
L R T L R T

α = 2
Normal approximation 0.47 13.8 14.27 0.27 15.18 15.45
Studentised bootstrap 1.09 8.03 9.12 0.93 9.49 10.42
Stud. var-stab bootstrap 0.70 6.85 7.54 0.48 8.32 8.80

α = 1.05
Normal approximation 0.94 7.54 8.48 0.75 7.91 8.66
Studentised bootstrap 1.82 4.67 6.49 1.85 5.14 6.99
Stud. var-stab bootstrap 1.51 4.29 5.80 1.39 4.72 6.12

α = 0.05
Normal approximation 1.40 4.90 6.30 1.22 5.08 6.31
Studentised bootstrap 2.36 3.18 5.54 2.31 3.26 5.57
Stud. var-stab bootstrap 2.16 3.02 5.18 2.09 3.05 5.13

Table 4: Coverage error rate of nominal 95 % two-sided confidence intervals. Notes: The nominal
error rate is 5 %. “Stud. var-stab. bootstrap” is the studentised bootstrap for the variance stabilising
transform given by eq. (10). “L” are rejections on the left of the confidence interval, “R” are
rejections on the right, and “T” are the total coverage error rates [%]. Based on R=100,000 repetions,
in each repetitions B=999 bootstrap sample were drawn, the sample size is n=500.

Table 4 consider the bootstrap evidence for the performance of the studentised variance stabilising
transform, and benchmarks this against the normal (first order) approximation and the performance
of the studentised bootstrap. The focus is again on the coverage error rates for two-sided confidence
intervals with nominal error rate 5%. The table breaks down the total coverage error rates (T), into
rejections on the left (L) of the confidence interval, i.e. when the population value lies to the left of
the lower confidence limit, and into rejections on the right (R). In each bootstrap simulation, samples
of size 500 were drawn B = 999 times, and the experiments were repeated R = 100, 000 times. The
poor quality of the normal approximation has been discussed extensively above. Consistent with
Davidson and Flachaire (2007), the studentised bootstrap improves on this but for large α the
discrepancy between nominal and actual coverage behaviour is still substantial. For instance, in
the SM case with α the actual error rate is still twice the nominal rate. The variance stabilising
transform improves performance further. In line with the previous results, all methods improve as
α falls, and as the right tail of the income distribution decays more quickly.

5 Conclusions
We have considered the well-known inference problem for inequality measures when incomes are
generated by distributions with sufficiently slowly decaying tails. The received wisdom is that these
are caused by the presence of extremes in the sample. We have shown that this is incorrect in so far as
the coverage failures of the usual two-sided confidence intervals are associated with particularly low
realisations of both bI anddvar(bI). To understand better the separate and joint contributions of both

6 In the SM case, the non-parametric curve falls below 1 around -.75, and about 1% of the simulated data lie to
the right of this point; in the depicted LN case, the respective numbers are -.9 and 0.7%.
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estimators, we have derived the bias, skewness and kurtosis coefficients for both the standardised
and studentised inequality measures.
Given the availability of the cumulant coefficients, it is of interest to consider two and three-

term Edgeworth expansions as well as saddlepoint approximations. These do lead to distributional
improvements compared to the normal approximation, but performance worsens as the sensitivity
parameter of the inequality index increases and the parameters of the income distribution changes
so that its right tail decays more slowly.
As the diagnostic tools point to the prominent role of the estimated variance dvar(bI) for poor

inference, we have considered the merit of applying variance stabilising transforms. Such transforms
are shown to lead to improved inference, and could be used as inputs in more sophisticated bootstrap
methods. The diagnosis of the inference problem and the suggested avenues for remedies complement
the methods considered in Davidson (2010), which is further discussed in Schluter (2010).
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A Cumulant Coefficients for Inequality Measures
This section states the cumulant coefficients (k1,2, k3,1, k2,2, k4,1) for the studentised and standardised
inequality measures. We associate the following mean-zero stochastic terms with the studentised
inequality measure Sn :

Y1,i = (Xi − μ1) (11)

Y2,i = μ1 (X
α
i − μα)− αμα (Xi − μ1)

Y3,i = (Xα
i − μα)−

1

2
α (α+ 1)μ−11 μα (Xi − μ1)

Y4,i = 2
h
μ1μ2α − αμαμα+1 − (1− α)

2
μ1μ

2
α

i
(Xi − μ1) + α2μ2α

¡
X2
i − μ2

¢
+2
h
α2μ2μα − αμ1μα+1 − (1− α)

2
μ21μα

i
(Xα

i − μα)

−2αμ1μα
¡
Xα+1
i − μα+1

¢
+ μ21

¡
X2α
i − μ2α

¢
Y5,i = −1

6
(α− 1)α (α+ 1)μ−21 μα (Xi − μ1)

Y6,i = Y1,i

Y7,i =
³
μ2α − (1− α)

2
μ2α

´
(Xi − μ1)−

³
2αμα+1 + (1− α)

2
4μ1μα

´
(Xα

i − μα)

−2αμα
¡
Xα+1
i − μα+1

¢
+ 2μ1

¡
X2α
i − μ2α

¢
Y8.i = (Xα

i − μα)

Y9,i =
³
α2μ2 − (1− α)

2
μ21

´
(Xα

i − μα) + α22μa
¡
X2
i − μ2

¢
− 2αμ1

¡
Xα+1
i − μα+1

¢
Theorem 4 The n−1/2 bias and skewness cumulant coefficients for Sn are

k1,2 = B
−1/2
0 E (Y1,iY3,i)−

1

2
B
−3/2
0 E (Y2,iY4,i) (12)

k3,1 = B
−3/2
0

£
E
¡
Y 3
2,i

¢
+ 6E (Y1,iY2,i)E (Y2,iY3,i)− 3E (Y2,iY4,i)

¤
. (13)

The n−1 coefficients for Sn are

k2,2 = 2

∙
B−10 E (Y1Y2Y3)−

1

2
B−20 E (Y2Y2Y4)

¸
(14)

+2B−10 E [Y1,iY1,iY2,iY5,i]3 terms,2+2 components

−2B−20 E [Y1,iY2,iY3,iY4,i]3 terms,2+2 components

−B−20 E [Y2,iY2,iY6,iY7,i]3 terms,2+2 components

−B−20 E [Y2,iY2,iY8,iY9,i]3 terms,2+2 components

+B−30 E [Y2,iY2,iY4,iY4,i]3 terms,2+2 components

+B−10 E [Y1,iY1,iY3,iY3,i]3 terms,2+2 components

and
k4,1 = e4,1 − 4k1,2k3,1 − 6k2,2 (15)
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with

e4,1 = B−20 E
¡
Y 4
2,i

¢
− 3

+4B−20 E (Y2,iY2,iY2,iY1,iY3,i)10 terms,2+3 components

−2B−30 E (Y2,iY2,iY2,iY2,iY4,i)10 terms,2+3 components

+4B−20 E (Y1,iY1,iY2,iY2,iY2,iY5,i)15 terms,2+2+2 components

−8B−30 E (Y1,iY2,iY2,iY2,iY3,iY4,i)15 terms,2+2+2 components

−2B−30 E (Y2,iY2,iY2,iY2,iY6,iY7,i)15 terms,2+2+2 components

−2B−30 E (Y2,iY2,iY2,iY2,iY8,iY9,i)15 terms,2+2+2 components

+3B−40 E (Y2,iY2,iY2,iY2,iY4,iY4,i)15 terms,2+2+2 components

+6B−20 E (Y1,iY1,iY2,iY2,iY3,iY3,i)15 terms,2+2+2 components

7As in Schluter and van Garderen (2009), we have used the shorthand notation
E [YAYBYCYD]3 terms,2+2 components := E (YAYB)E (YCYD)+E (YAYC)E (YBYD)+E (YAYD)E (YBYC)
etc. The second subscript indicates (i) how many expectations are to be multiplied, and (ii) how
many random variables enter each expectation, the first subscript (“terms”) refers to the total
number of unordered permutations of these terms. All of the enumerated expectations are easy to
compute8 but expositionally prohibitively expensive to write out explicitly in terms of the underly-
ing population moments μ1, .., μ4α. Nor would these expressions be analytically insightful for most
purposes. Some analytical insight is possible though. For instance, the inequality measure I is scale
invariant, so is σ and hence Sn and so are the cumulant coefficients (k1,2, k3,1, k2,2, k4,1). It can be
verified that the cumulant coefficients stated in Theorem 4 indeed satisfy this property. Theorem 4
extends the results of Schluter and van Garderen (2009) to include the coefficients k2,2 and k4,1.
Turning to the standardised inequality measure, we have the following result:

Theorem 5 The cumulant coefficients for the standardised inequality measure eSn = n1/2
³bI − I

´
/σ

are given by Theorem 4 with the stochastic terms replaced by eY1,i = Y1,i, eY2,i = Y2,i, eY4,i = eY6,i =eY7,i = eY8,i = eY9,i = 0 and
eY3,i =

1

2
α (α+ 1)μαμ

−1
1 (Xi − μ1)− α (Xα

i − μα)

eY5,i =
1

2
α (α+ 1)μ−11 (Xα

i − μα)−
1

6
α (α+ 1) (α+ 2)μαμ

−2
1 (Xi − μ1) .

7Of course, the validity of the stated cumulant coefficients has been tested extensively using simulation studies.
Details are available on request.

8The R code is available from the author.
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B Proofs and Derivations
Proof of Proposition 1.
Expanding t (I) about I0 to third order, factorising t0 (I0) and using the definition of S, and

expanding [t0 (I)]−1 to second order similarly yields

T =

"
1− n−1/2bσ t00 (I0)

t0 (I0)
+

Ã
t00 (I0)

2

t0 (I0)
3 −

1

2

t000 (I0)

t0 (I0)
2

!
n−1bσ2S3#×∙

S +
1

2
n−1/2bσ t00 (I0)

t0 (I0)
S2 +

1

6
n−1bσ2 t000 (I0)

t0 (I0)
S3
¸
+Op

³
n−3/2

´
.

The claim follows after multiplying out and collecting terms of the same order.
Proof of Corollary 2. Recall that E

¡
S2
¢
= 1 + n−1k2,2 + O

¡
n−3/2

¢
, E

¡
S3
¢
= n−1/2e3,1 +

O
¡
n−3/2

¢
, E

¡
S4
¢
= 3 + n−1e4,2 +O

¡
n−3/2

¢
, E

¡
S5
¢
= n−1/2e5,1 = n−1/2 (k5,1 + 10k3,1 + 15k1,2),

and E
¡
S6
¢
= 15 + O

¡
n−1

¢
with e3,1 = k3,1 + 3k1,2 and k4,2 = e4,1 − 4k1,2k3,1 − 6k2,2. From

Proposition 1 we have using bσ = σ +Op

¡
n−1/2

¢
T = S − 1

2
n−1/2bσ t00 (I0)

t0 (I0)
S2 + n−1σ2

"
1

2

t00 (I0)
2

t0 (I0)
2 −

1

3

t000 (I0)

t0 (I0)

#
S3. (16)

(i) Derivation of λ1,2. Take expectations of (16) and use bσ = σ +Op

¡
n−1/2

¢
to obtain

E (T ) = E (S)− 1
2
n−1/2σ

t00 (I0)

t0 (I0)
E
¡
S2
¢
+O

¡
n−1

¢
= n−1/2k1,2 −

1

2
n−1/2σ

t00 (I0)

t0 (I0)
+O

¡
n−1

¢
.

Therefore λ1,2 = k1,2 − 1
2n
−1/2σ t00(I0)

t0(I0)
.

(ii) Derivation of λ2,2. Square (16), take expectations and ignore higher order terms to obtain

E
¡
T 2
¢
= E

¡
S2
¢
− n−1/2

t00 (I0)

t0 (I0)
E
¡
S3bσ¢+ n−1σ2

Ã
5

4

t00 (I0)
2

t0 (I0)
2 −

2

3

t000 (I0)

t0 (I0)

!
E
¡
S4
¢
+O

³
n−3/2

´
.

The expression includes the term E
¡
S3bσ¢ so that the estimation error of order n−1/2 for the standard

deviation needs to be accounted for. Specifically, let

bσ = σ + n−1
X
i

Wi +Op

¡
n−1

¢
, (17)

where Wi are mean-zero random variables. This expression obtains using the methods employed in
the proof of theorem 4. In particular, recall that bσ = ¡α2 − α

¢−1
m
−(α+1)
1

bB1/2
0 , centre the sample

moments, Taylor expand both m
−(α+1)
1 and bB1/2

0 , and multiply out. From this proof it also follows
that S3 = S30 + 3S

2
0S1/2 +Op

¡
n−3/2

¢
with S0 = B

−1/2
0 n−1/2

P
i Y2,i and Y2,i defined in (11). Then

n−1/2E
¡
S3bσ¢ = n−1/2E

¡
S3σ

¢
+ n−1c2 +O

³
n−3/2

´
with c2 = B

−3/2
0 E (Y2Y2Y2W )3 terms,2+2=B

−3/2
0 ×3E

¡
Y 2
2

¢
E (Y2W ) = 3B

−1/2
0 E (Y2W ) sinceE

¡
Y 2
2

¢
=

B0. Now let
c = B

−1/2
0 E (Y2W )

so that c2 = 3c. The claim then follows after using the above expressions for the moments and hence
the cumulant coefficients of S.
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It remains to state the mean-zero random variable W explicitly. The expansion of cB0 yieldscB0 = B0 + n−1
P

Zi + Op

¡
n−1

¢
, with Zi =

h
μ2α2μ1 − 2αμαμα+1 − (1− α)

2
μ2α2μ1

i
(Xi − μ1) +

α2μ2α
¡
X2
i − μ2

¢
+
h
2α2μαμ2 − 2αμ1μα+1 − (1− α)2 μ212μα

i
(Xα

i − μα)− 2αμ1μα
¡
Xα+1
i − μα+1

¢
+

μ21
¡
X2α
i − μ2α

¢
. The Taylor expansions and multiplications finally yieldWi =

¡
α2 − α

¢−1
B
−1/2
0 μ

−(α+1)
1 ×

[12Zi − (α+ 1)μ
−1
1 B0 (Xi − μ1)]. It can be verified that the term c is indeed scale-invariant.

(iii) Derivation of λ3,1. Cube (16), use bσ = σ +Op

¡
n−1/2

¢
, take expectations and ignore higher

order terms to get

E
¡
T 3
¢
= E

¡
S3
¢
− n−1/2

3

2
σ
t00 (I0)

t0 (I0)
E
¡
S4
¢
+O

¡
n−1

¢
= n−1/2

∙
e3,1 −

9

2
σ
t00 (I0)

t0 (I0)

¸
+O

¡
n−1

¢
.

Hence e3,1 − 9
2σ

t00(I0)
t0(I0)

= λ3,1 + 3λ1,2, and solving for λ3,1 using the result for λ1,2 obtained in step
(i) proves the claim.
(iv) Derivation of λ4,1. Raise expression (16) to the fourth power, take expectations and ignore

higher order terms to get

E
¡
T 4
¢
= E

¡
S4
¢
− n−1/22

t00 (I0)
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E
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S5bσ¢+ n−1σ2

Ã
7

2

t00 (I0)
2

t0 (I0)
2 −

4

3

t000 (I0)

t0 (I0)

!
E
¡
S6
¢
+Op

³
n−3/2

´
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As in the proof of part (ii), use expansion (17) and S5 = S50 + 5S
4
0S1/2 +Op
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¢
. Then
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× 15c
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Denoting the coefficient of n−1 by γ we have λ4,2 = γ − 4λ1,2λ3,1 − 6λ2,2. The claim follows
using the above expressions for e4,1 and e5,1, and the use of results for λ1,2, λ3,1, and λ2,2 in steps
(i)-(iii) after some simplifications.
Proof of Lemma 3. We have

λ1,2 = k1,2 +
1

2
σ
γ2
2

λ3,1 = k3,1 + 3σ
γ2
2

λ2,2 = k2,2 + σ
γ2
2

∙
k3,1 + 3k1,2 +

7

4
σ
γ2
2

¸
+
3

4
γ2c

λ4,1 = k4,1 + σγ2

h
k5,1 + 6k3,1 + 8σ

γ2
2

i
+
21

2
γ2c.

With γ2 > 0 and (k1,2, k3,1, k5,1) all negative and (k2,2, k4,1) all positive, the statement follows for
sufficiently small γ2.
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B.1 Proof of Theorem 4

Sn =
√
n

Ã bI − Ibσ
!

=
√
n bB−1/20

£
mαm1 − μ−α1 μαm

α+1
1

¤
Centering the sample moments, mα = μα + n−1

P
(Xα

i − μα), and Taylor expanding the power
functions yields to a stochastic expansion of the general form

Sn = Sn,0 + Sn,1/2 + Sn,1 +Op

³
n−3/2

´
where Sn,β denotes a term that is Op

¡
n−β

¢
. These stochastic terms are defined in terms of the

primitive mean-zero stochastic terms Y1,i, .., Y9,i given in (11) as follows:

Sn,0 = B
−1/2
0 n−1/2

X
i

Y2,i

Sn,1/2 = B
−1/2
0 n−3/2

X
i

X
i

Y1,iY3,i −
1

2
B
−3/2
0 n−3/2

X
i

X
i

Y2,iY4,i

Sn,1 = B
−1/2
0 n−5/2

X
i

X
i

X
i

Y1,iY1,iY5,i

−1
2
B
−3/2
0 n−5/2

X
i

X
i

X
i

Y1,iY3,iY4,i

−1
2
B
−3/2
0 n−5/2

X
i

X
i

X
i

Y2,iY6,iY7,i

−1
2
B
−3/2
0 n−5/2

X
i

X
i

X
i

Y2,iY8,iY9,i

+
3

8
B
−5/2
0 n−5/2

X
i

X
i

X
i

Y2,iY4,iY4,i

B.2 Moments and Cumulant Coefficients of Order n−1/2

We have
K1 = E

¡
Sn,1/2

¢
,

hence it is immediate that

k1,2 = B
−1/2
0 E (Y1,iY3,i)−

1

2
B
−3/2
0 E (Y2,iY4,i) . (18)

Next, we have, noting E
¡
S2n
¢
= 1 +O

¡
n−1

¢
, that

E
¡
S3n
¢
= E

¡
S3n,0

¢
+ 3E

¡
S2n,0Sn,1/2

¢
+O

³
n−3/2

´
K3 = E

¡
S3n
¢
− 3E (Sn) +O

³
n−3/2

´
since E

¡
Y 2
2,i

¢
= B0 and it turns out that E

¡
S2n,0Sn,1

¢
= O

¡
n−3/2

¢
and E

³
Sn,0S

2
n,1/2

´
= O

¡
n−3/2

¢
.

We have E
¡
S3n,0

¢
= n−1/2B

−3/2
0 E

¡
Y 3
2,i

¢
and E

¡
3S2n,0Sn,1/2

¢
= n−1/23B

−3/2
0 [E

¡
Y 2
2,i

¢
E (Y1,iY3,i) +

2E (Y1,iY2,i)E (Y2,iY3,i)− 3
2E (Y2,iY4,i)] so

k3,1 = B
−3/2
0

£
E
¡
Y 3
2,i

¢
+ 6E (Y1,iY2,i)E (Y2,iY3,i)− 3E (Y2,iY4,i)

¤
. (19)
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B.3 Moments and Cumulant Coefficients of Order n−1

S2n = S2n,0 + 2Sn,0Sn,1/2 + 2Sn,0Sn,1 + S2n,1/2 +Op

³
n−3/2

´
S4n = S4n,0 + 4S

3
n,0Sn,1/2 + 4S

3
n,0Sn,1 + 6S

2
n,0S

2
n,1/2 +Op

³
n−3/2

´
.

Take expectations and consider the individual contributions. Note that E
¡
S2n,0

¢
= 1 since

E
¡
Y 2
2,i

¢
= B0.

We have E
¡
2Sn,0Sn,1/2

¢
= n−12

£
B−10 E (Y1Y2Y3)− 1

2B
−2
0 E (Y2Y2Y4)

¤
. Next, we have

S2n,1/2 = B−10 n−3
X
i

X
i

X
i

X
i

Y1,iY1,iY3,iY3,i

−B−20 n−3
X
i

X
i

X
i

X
i

Y1,iY2,iY3,iY4,i

+
1

4
B−30 n−3

X
i

X
i

X
i

X
i

Y2,iY2,iY4,iY4,i

The generic summands of the expectation are E (
P

i

P
i

P
i

P
i YA,iYB,iYC,iYD,i), and theO

¡
n−1

¢
terms are the 3 distinct pairs, i.e.

E (YAYB)E (YCYD)+E (YAY C)E (YBYD)+E (YAYD)E (YBYC) := E [YAYBYCYD]3 terms,2+2 components

We use the notion on the RHS as a convenient shorthand (rather than tensor notation). Similarly,

2Sn,0Sn,1 = 2B−10 n−3
X
i

X
i

X
i

X
i

Y1,iY1,iY2,iY5,i

−B−20 n−3
X
i

X
i

X
i

X
i

Y1,iY2,iY3,iY4,i

−B−20 n−3
X
i

X
i

X
i

X
i

Y2,iY2,iY6,iY7,i

−B−20 n−3
X
i

X
i

X
i

X
i

Y2,iY2,iY8,iY9,i

+
3

4
B−30 n−3

X
i

X
i

X
i

X
i

Y2,iY2,iY4,iY4,i

Therefore
K2 = 1 + n−1k2,2 +O

¡
n−2

¢
with

k2,2 = 2

∙
B−10 E (Y1Y2Y3)−

1

2
B−20 E (Y2Y2Y4)

¸
(20)

+2B−10 E [Y1,iY1,iY2,iY5,i]3 terms,2+2 components

−2B−20 E [Y1,iY2,iY3,iY4,i]3 terms,2+2 components

−B−20 E [Y2,iY2,iY6,iY7,i]3 terms,2+2 components

−B−20 E [Y2,iY2,iY8,iY9,i]3 terms,2+2 components

+B−30 E [Y2,iY2,iY4,iY4,i]3 terms,2+2 components

+B−10 E [Y1,iY1,iY3,iY3,i]3 terms,2+2 components .

Next, consider the fourth moment of Sn, and proceed component by component. S4n,0 =

B−20 n−2
P

i

P
i

P
i

P
i Y2,iY2,iY2,iY2,i.
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Then E
¡
S4n,0

¢
= B−20 E [Y2Y2Y2Y2]3 terms,2+2 components +n−1B−20 E

¡
Y 4
2,i

¢
= 3+n−1B−20 E

¡
Y 4
2,i

¢
since E [Y2Y2Y2Y2]3 terms,2+2 components = 3

£
E
¡
Y 2
2

¢¤2
and E

¡
Y 2
2

¢
= B0

E
¡
S4n,0

¢
= 3 + n−1B−20 E

¡
Y 4
2,i

¢

E
¡
4S3n,0Sn,1/2

¢
= 4B−20 E (Y2,iY2,iY2,iY1,iY3,i)10 terms,2+3 components

−2B−30 E (Y2,iY2,iY2,iY2,iY4,i)10 terms,2+3 components

4S3n,0Sn,1 = 4B−20 E (Y1,iY1,iY2,iY2,iY2,iY5,i)10 terms,2+2+2 components

−2B−30 E (Y1,iY2,iY2,iY2,iY3,iY4,i)10 terms,2+2+2 components

−2B−30 E (Y2,iY2,iY2,iY2,iY6,iY7,i)10 terms,2+2+2 components

−2B−30 E (Y2,iY2,iY2,iY2,iY8,iY9,i)10 terms,2+2+2 components

+
3

2
B−40 E (Y2,iY2,iY2,iY2,iY4,iY4,i)10 terms,2+2+2 components

E
³
6S2n,0S

2
n,1/2

´
= 6B−20 E (Y1,iY1,iY2,iY2,iY3,iY3,i)10 terms,2+2+2 components

−6B−30 E (Y1,iY2,iY2,iY3,iY2,iY4,i)10 terms,2+2+2 components

+
3

2
B−40 E (Y2,iY2,iY2,iY2,iY4,iY4,i)10 terms,2+2+2 components

Therefore

E (Sn)
4 = E

¡
S4n,0

¢
+ 4E

¡
S3n,0Sn,1/2

¢
+ 4E

¡
S3n,0Sn,1

¢
+ 6E

³
S2n,0S

2
n,1/2

´
+O

³
n−3/2

´
= 3 + n−1e4,1 +O

¡
n−2

¢
with

e4,1 = B−20 E
¡
Y 4
2,i

¢
− 3

+4B−20 E (Y2,iY2,iY2,iY1,iY3,i)10 terms,2+3 components

−2B−30 E (Y2,iY2,iY2,iY2,iY4,i)10 terms,2+3 components

+4B−20 E (Y1,iY1,iY2,iY2,iY2,iY5,i)15 terms,2+2+2 components

−8B−30 E (Y1,iY2,iY2,iY2,iY3,iY4,i)15 terms,2+2+2 components

−2B−30 E (Y2,iY2,iY2,iY2,iY6,iY7,i)15 terms,2+2+2 components

−2B−30 E (Y2,iY2,iY2,iY2,iY8,iY9,i)15 terms,2+2+2 components

+3B−40 E (Y2,iY2,iY2,iY2,iY4,iY4,i)15 terms,2+2+2 components

+6B−20 E (Y1,iY1,iY2,iY2,iY3,iY3,i)15 terms,2+2+2 components .

Finally since K4 = E(S4)− 4E(S3)E(S)− 3
¡
E(S2)

¢2
+ 12E(S2) (E(S))

2 − 6 (E(S))4 it follows
that with K4 = n−1k4,1 +O(n−3/2), we have

k4,1 = e4,1 − 4k1,2 [k3,1 + 3k1,2]− 6k2,2 + 12 (k1,2)2 (21)

= e4,1 − 4k1,2k3,1 − 6k2,2.
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